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HOW SHOULD COMPANIES FUND  
THEIR LIABILITIES AND DETERMINE 
ALLOCATIONS AMONG ASSET 
CLASSES AND HEDGING 
INSTRUMENTS?

Siemens AG Österreich, part of the 
global Siemens Corporation, is the largest pri-
vately owned industrial company in Austria. 
Its businesses, with revenues of €2.4 billion in 
1999, include information and communica-
tion networks, information and communica-
tion products, business services, energy and 
traveling technology, and medical equipment. 
Their pension fund, established in 1998, is 
a defined contribution plan and the largest 
corporate pension plan in Austria. More 
than 15,000 employees and 5,000 pensioners 
are members of the pension plan, which has 
€510 million in assets under management as 
of December 1999.

Innovest Finanzdienstleistungs AG, 
founded in 1998, is the investment manager 
for Siemens AG Österreich, the Siemens 
Pension Plan, and other institutional investors 
in Austria. With €2.2 billion in assets under 
management, Innovest focuses on asset man-
agement for institutional money and pension 
funds. This pension plan was rated the best 
in Austria of the 17 plans analyzed in the 

1999–2000 period. The motivation to build 
InnoALM, which is described in Geyer and 
Ziemba [2008], stems from their desire for 
superior performance and good decision aids 
to help achieve this result.

Various uncertain aspects—such as 
future economic scenarios, performance of 
stock, bond and other investments, transaction 
costs, liquidity, currency movements, liability 
commitments over time, Austrian pension 
fund law, and company policy—pointed to 
use of a multiperiod stochastic linear pro-
gramming model. These models evolve from 
Kusy and Ziemba [1986] and Ziemba and 
Mulvey [1998], and the Russell–Yasuda Kasai 
model (see Cariño et al. [1994] and Cariño 
et al. [1998]). Other stochastic program-
ming applications are discussed in Consiglio 
et al. [2004]; Wallace and Ziemba [2005]; 
Consiglio et al. [2006]; Zenios and Ziemba 
[2006, 2007]; Zenios [2007]; Bertocchi et al. 
[2010]; Consigli et al. [2012]; and Consiglio 
et al. [2015]. Cariño and Turner [1998] discuss 
having derivative securities in the Russell–
Yasuda Kasai-type model. This model has 
innovative features such as state-dependent 
correlation matrixes, fat-tailed asset return 
distributions, a convex risk measure leading to 
a concave maximization problem, and simple  
computational schemes and output. The case 
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for convex risk measures over Var and C-Var in asset-
liability models is made in Ziemba [2013]. Ziemba [2003] 
discusses the application of these models to other types 
of financial institutions with similar models, such as the 
InnoALM detailed here. Birge and Louveaux [2011] dis-
cuss stochastic programming theory.

InnoALM was produced in six months during 
2000 with Geyer and Ziemba serving as consultants with 
Herold and Kontriner, the Innovest employees. InnoALM 
demonstrates that a small team of researchers with a lim-
ited budget can quickly produce a valuable modeling 
system that can easily be operated by non-stochastic 
programming specialists on a single PC. The IBM OSL 
stochastic programming software provides a good solver. 
The solver was interfaced with user-friendly input and 
output capabilities. Calculation times on the PC are such 
that different modeling situations can be easily developed 
and the implications of policy, scenario, and other changes 
can be seen quickly. The graphical output provides pen-
sion fund management with essential information to aid 
in the making of informed investment decisions and to 
understand the probable outcomes and risk involved with 
these actions. The model can be used to explore possible 
European, Austrian, and Innovest policy alternatives.

The liability side of the Siemens Pension Plan con-
sists of employees, for whom Siemens is contributing 
defined contribution payments, and retired employees 
who receive pension payments. Contributions are 

based on a fixed fraction of salaries, which varies across 
employees. Active employees are assumed to be in steady 
state; thus, employees are replaced by a new employee 
with the same qualification, sex, and age group char-
acteristics so there is a constant number of similar 
employees. Newly employed staff start with less salary 
than retired staff, which implies that total contribu-
tions grow less rapidly than individual salaries. Exhibit 1 
shows the expected index of total payments for active 
and retired employees until 2030.

The set of retired employees is modeled using 
Austrian mortality and marital tables. Widows receive 
60% of the pension payments. Retired employees receive 
pension payments after reaching age 65 for men and 60 
for women. Payments to retired employees are based 
upon the individually accumulated contribution and the 
fund performance during active employment. The annual 
pension payments are based on a discount rate of 6% and 
the remaining life expectancy at the time of retirement. 
These annuities grow by 1.5% annually to compensate 
for inf lation. Hence, the wealth of the pension fund must 
grow by 6% for the growth in employees and 1.5% for 
inf lation, or 7.5% per year in total, to match liability 
commitments. Another output of the computations is 
the expected annual net cash f low of plan contributions 
minus payments. Since the number of pensioners is rising 
faster than plan contributions, these cash f lows are nega-
tive, so the plan is declining in size.

E x h i b i t  1
Index of Expected Payments for Active and Retired Employees, 2000–2030

Source: Geyer and Ziemba [2008].
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The model determines the optimal non-negative 
purchases (P) and sales (S) for each of N assets in each 
of T planning periods. Typical asset classes used at 
Innovest are U.S., Pacif ic, European, and emerging 
market equities and U.S., U.K., Japanese, and European 
bonds. The objective is to maximize the concave risk 
averse utility function: expected terminal wealth less 
convex penalty costs subject to various linear constraints. 
The effect of such constraints is evaluated in the examples 
that follow, including Austria’s limits of 40% maximum 
in equities, 45% maximum in foreign securities, and 
40% minimum in Eurobonds. The convex risk measure 
is approximated by a piecewise linear function, so the 
model is a multiperiod stochastic linear program. Typical 
targets that the model tries to achieve (and if not, is 
penalized for), are for wealth (the fund’s assets) to grow 
by 7.5% per year and for portfolio performance returns 
to exceed benchmarks. The former is a deterministic 
target, while the latter is a stochastic target. The 7.5% 
target accounts for inf lation in pension payments plus the 
growth of the number of pensioners actually receiving 
benefits. Excess wealth is placed into surplus reserves, and 
a portion of it is paid out in succeeding years.

The penalty costs serve to force the allocations to 
comply with these targets. In the Russell–Yasuda Kasai 
model, David Myers (see Cariño et al. [1998]) calculated 
the exact cost of penalty violations, adding up all the 
costs; we used these results for the coefficients. Since the 
InnoALM model was intended for many applications, 
we allow the user to set the costs at realistic values, 
which are likely high enough to force non-violations 
of these targets.

The elements of InnoALM are described in 
Exhibit 2. The interface to read in data and problem 
elements uses Excel. Statistical calculations use the 
program Gauss, and this data is fed into the IBM0SL 
solver, which generates the optimal solution to the sto-
chastic program. The output, some of which is shown 
in the next section, used Gauss to generate various tables 
and graphs and retains key variables in memory to allow 
for future modeling calculations.

FORMULATING INNOALM AS A 
MULTISTAGE STOCHASTIC LINEAR 
PROGRAMMING MODEL

The non-negative decision variables are wealth 
(after transactions costs), and purchases and sales for 

each asset (i = 1, …, N ). Purchases and sales take place 
in periods t = 0, …, T-1. Except for t = 0, purchases and 
sales are scenario dependent. All decision variables are 
non-negative.

Wealth accumulates over time for a T period 
model according to
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init is the initial value of asset i. There is no 

uncertainty in the initialization period t = 0. Tildes 

E x h i b i t  2
Elements of InnoALM: GAUSS is a Statistical 
Package, IBMOSL Solver is the Code Used to 
Compute the Stochastic Programming Solutions,  
and SMPS Presents the Model in Readable Form  
into the Optimization Code

Source: Geyer and Ziemba [2008].
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denote random scenario-dependent parameters or 
decision variables. Returns �Rit (t = 1, …, T ) are the 
gross returns from asset i between t = 1 and t.

The budget constraints are
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where tcpi and tcsi are the linear transaction costs for 
purchases and sales, and Ci is the fixed (non-random) 
net cashf low (inf low, if positive).

Since short sales are not allowed, the following 
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where θU is the maximum percentage and θL is the 
minimum percentage of the subsets Uj and Ll of assets 
i = 1, …, N included in the restrictions j and l, respectively. 
The θU’s, θL’s, Uj’s and Ll’s may be time dependent. 
Austria, Germany, and other European Union countries 
have restrictions that vary from country to country but 
not across time. Austria currently has the following limits: 
max 40% equities, max 45% foreign securities, min 40% 
Eurobonds, max 5% total premiums in non-currency 
hedge options short and long positions. The model has 
convex penalty risk function costs if goals in each period 
are not satisfied. In a typical application, the wealth target 
Wt is assumed to grow by 7.5% in each period. This is a 
deterministic target goal for the increase in the pension 
funds assets. The wealth targets are modeled via
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segment j of the cost-function, bj is the j-th breakpoint 
of the risk measure function b0 = 0, and m is the number 
of segments of the function. A quadratic function works 
well but other functions may be linearized as well. 
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Stochastic benchmark goals can be set by the user 
and are similarly penalized with a piecewise linear convex 
risk measure for underachievement. The benchmark 
target �Bt is scenario dependent. It is based on stochastic 
asset returns and fixed asset weights defining the bench-
mark portfolio
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B is the benchmark-target shortfall.

If the total wealth implied by the allocation is 
above the target a percentage γ, typically a conserva-
tive 10% of the exceeding amount is allocated to the 
reserve account. Then the wealth targets for all future 
stages are increased. For this purpose, additional non-
negative decision variables �Dt are introduced, and the 
wealth target constraints become
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Since pension payments are based on wealth levels, 
increasing these levels increases pension payments. The 
reserves provide security for the pension plan’s increase 
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of pension payments at each future stage. The fund had 
accumulated such a surplus by 2000.

The pension plan’s objective function is to maxi-
mize the expected discounted value of terminal wealth 
in period T net of the expected discounted penalty costs 
over the horizon from the convex risk measures ck (⋅) for 
the wealth and benchmark targets, respectively,
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Expectation is over T period scenarios ST   . The vk 
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The discount factors dt are defined on the basis of 
an interest rate r: dt = (1 + r)-t. Usually r is taken to be 
the three- or six-month Treasury-bill rate. However, 
Campbell and Viceira [2002] argue that, in a multiperiod 
world, the proper risk-free asset is an inf lation-indexed 
annuity, rather than the short-dated T-bill. Their analysis 
is based on a model in which agents desire to hedge 
against unanticipated changes in the real rate of interest. 
Ten-year inf lation-index bonds are then suggested for r as 
their duration closely approximates the indexed annuity.

The shortfall cost coeff icients are based on the 
least cost way to make up the shortfall-embarrassments, 
which may be the product of an optimized combination 
of borrowing, equity, short- and long-term debt, and 
other financial instruments. See Cariño et al. [1994]; 
Cariño et al. [1998]; and Cariño and Ziemba [1998] for 
a discussion.

Allocations are based on optimizing the stochastic 
linear program with IBM’s optimization solutions library 
using the stochastic extension library (OSLE version 3).1  
The library uses the Stochastic Mathematical Program-
ming System (SMPS) input format for multistage sto-
chastic programs (see Birge et al. [1986]). The OSLE 
routines require three input files: the core-, stoch- and 
time-file. The core-file contains information about the 
decisions variables, constraints, right-hand-sides, and 
bounds. It contains all f ixed coefficients and dummy 
entries for random elements. The stoch-file ref lects 

the node structure of the scenario tree and contains all 
random elements, i.e., asset and benchmark returns, and 
probabilities. Non-anticipatory constraints are imposed 
to guarantee that a decision made at a specific node is 
identical for all scenarios leaving that node, so the future 
cannot be anticipated. This is implemented by specifying 
an appropriate scenario structure in the stoch input file. 
The time-file assigns decision variables and constraints 
to stages. The required statements in the input files are 
automatically generated by the InnoALM system.

SOME TYPICAL APPLICATIONS

To illustrate the model’s use, I present results for a 
problem with four asset classes (Stocks Europe, Stocks 
US, Bonds Europe, and Bonds US) with five periods 
(six stages). The periods are twice 1 year, twice 2 years 
and 4 years (10 years in total). Discrete compounding is 
assumed, which implies that the mean return for asset  
i (μi) used in simulations is µ = −exp( ) 1yi i , where yi is the 
mean based on log-returns. Next, 10,000 scenarios are 
generated using a 100-5-5-2-2 node structure. Initial 
wealth equals 100 units, and the wealth target is assumed 
to grow at an annual rate of 7.5%. No benchmark target 
and no cash in- and outf lows are considered in this 
sample application to make its results more general. 
RA = 4 and the discount factor equals 5%, which cor-
responds roughly with a simple static mean-variance 
model to a standard 60–40 stock-bond pension fund 
mix (see Kallberg and Ziemba [1983]).

Assumptions about the statistical properties of 
returns measured in nominal euros are based on a 
sample of monthly data from January 1970 for stocks 
and 1986 for bonds to September 2000. Summary statis-
tics for monthly and annual log returns are in Exhibit 3. 
The U.S. and European equity means for the longer 
period 1970–2000 are much lower than for the period 
1986–2000 and slightly less volatile. The monthly 
stock returns are non-normal and negatively skewed. 
Monthly stock returns are fat-tailed, whereas monthly 
bond returns are close to normal (the critical value of 
the Jarque-Bera test for a = .01 is 9.2).

However, for long-term planning models, such as 
InnoALM with its one year review period, properties 
of monthly returns are less relevant. The bottom panel 
of Exhibit 3 contains statistics for annual returns. While 
average returns and volatilities remain about the same 
(we lose one year of data, when we compute annual 



www.manaraa.com

104      An Approach to Financial Planning of Retirement Pensions with Scenario-Dependent Correlation Matrixes	S ummer 2016

returns), the distributional properties change dramati-
cally. Although we still f ind negative skewness, there 
is no evidence for fat tails in annual returns except for 
European stocks (1970–2000) and U.S. bonds.

The mean returns from this sample are compa-
rable to the 1900–2000 one hundred and one year mean 
returns estimated by Dimson et al. [2002]. Their esti-
mate of the nominal mean equity return for the United 
States is 12.0% and that for Germany and the United 
Kingdom is about 13.6% (the simple average of the 
means of the two countries). The mean of bond returns 
is 5.1% for the United States and 5.4% for Germany and 
the United Kingdom.

Assumptions about means, standard deviations, 
and correlations for the applications of InnoALM appear 
in Exhibit 5 and are based on the sample statistics in 
Exhibit 4. Projecting future rates of returns from past 
data is diff icult. The equity means from the period 
1970–2000 are used since the period 1986–2000 had 
exceptionally good performance of stocks that is not 
assumed to prevail in the long run.

The correlation matrixes in Exhibit 5 for the three 
different regimes are based on the regression approach 
of Solnik et al. [1996]. Moving average estimates of 
correlations among all assets are functions of standard 
deviations of U.S. equity returns. The estimated regres-
sion equations are then used to predict the correlations 

in the three regimes shown in Exhibit 5. Results for the 
estimated regression equations appear in Exhibit 4. Three 
regimes are considered, with the assumption that 10% of 
the time, equity markets are extremely volatile; 20% of 
the time, markets are characterized by high volatility; and 

E x h i b i t  3
Statistical Properties of Asset Returns

Source: Geyer and Ziemba [2008].

E x h i b i t  4
Regression Equations Relating Asset Correlations 
and U.S. Stock Return Volatility (monthly returns; 
Jan 1989–Sep 2000; 141 observations)

Source: Geyer and Ziemba [2008].

E x h i b i t  5
Means, Standard Deviations, and Correlations 
Assumptions

Source: Geyer and Ziemba [2008].



www.manaraa.com

The Journal of Retirement      105Summer 2016

70% of the time, markets are normal. The 35% quantile of 
U.S. equity return volatility defines normal periods. Highly 
volatile periods are based on the 80% volatility quantile 
and extreme periods on the 95% quartile. The associated 
correlations ref lect the return relationships that typically 
prevailed during those market conditions. The corre-
lations in Exhibit 5 show a distinct pattern across the 
three regimes. Correlations among stocks tend to increase 
as stock return volatility rises, whereas the correlations 
between stocks and bonds tend to decrease. European 
bonds may serve as a hedge for equities during extremely 
volatile periods since bonds and stocks returns, which 
are usually positively correlated, are then negatively cor-
related. The latter is a major reason why using scenario-
dependent correlation matrixes is a major advance over 
sensitivity of one correlation matrix.

Optimal portfolios were calculated for seven 
cases—with and without mixing of correlations and 
with normal, t-, and historical distributions. Cases NM, 
HM, and TM use mixing correlations. Case NM 
assumes normal distributions for all assets. Case HM 
uses the historical distributions of each asset. Case TM 
assumes t-distributions with five degrees of freedom for 
stock returns, and normal distributions for bond returns. 
The cases NA, HA, and TA use the same distribution 
assumptions with no mixing of correlations matrixes. 
Instead the correlations and standard deviations used in 

these cases correspond to an “average” period where 
10%, 20%, and 70% weights are used to compute aver-
ages of correlations and standard deviations used in the 
three different regimes. Comparisons of the average 
(A) cases and mixing (M) cases are mainly intended 
to investigate the effect of mixing correlations. TMC 
maintains all assumptions of case TM but uses Austria’s 
constraints on asset weights. Eurobonds must be at least 
40%, and equity at most 40%, and these constraints are 
binding.

SOME TEST RESULTS

Exhibit 6 shows the optimal initial asset weights 
at stage 1 for the various cases. Exhibit 7 shows results 
for the f inal stage (expected weights, expected ter-
minal wealth, expected reserves, and shortfall prob-
abilities). These exhibits show a distinct pattern: the 
mixing correlation cases initially assign a much lower 
weight to European bonds than the average period cases.  
Single-period, mean-variance optimization, and the 
average period cases (NA, HA, and TA) suggest an 
approximate 45–55 mix between equities and bonds. 
The mixing correlation cases (NM, HM, and TM) imply 
a 65–35 mix. Investing in U.S. bonds is not optimal at 
stage 1 in any of the cases, which seems attributable to 
the relatively high volatility of U.S. bonds.

E x h i b i t  6
Optimal Initial Asset Weights at Stage 1 by Case (percentage)

Source: Geyer and Ziemba [2008].
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Exhibit 7 shows that the distinction between A and 
M cases becomes less pronounced over time. However, 
European equities still have a consistently higher weight 
in the mixing cases than in no-mixing cases. This 
higher weight is mainly at the expense of Eurobonds. 
In general, the proportion of equities at the final stage is 
much higher than in the first stage. This result may be 
explained by the fact that the expected portfolio wealth 
at later stages is far above the target wealth level (206.1 
at stage 6), and the higher risk associated with stocks 
is less important. The constraints in case TMC lead to 
lower expected portfolio wealth throughout the horizon 
and to a higher shortfall probability than in any other 
case. Calculations show that initial wealth would have 
to be 35% higher to compensate for the loss in terminal 
expected wealth owing to those constraints. In all cases, 
the optimal weight of equities is much higher than the 
historical 4.1% in Austria.

The expected terminal wealth levels and the short-
fall probabilities at the final stage shown in Exhibit 7 
make the difference between mixing and no-mixing 
cases even clearer. Mixing correlations yields higher 
levels of terminal wealth and lower shortfall probabilities.

If the level of portfolio wealth exceeds the target, 
the surplus �D is allocated to a reserve account. The 
reserves in t are computed from �∑ =1

Djj

t
 and as shown 

in Exhibit 7 for the f inal stage. These values are in 
monetary units, given an initial wealth level of 100. They 
can be compared with the wealth target 206.1 at stage 6.  
Expected reserves exceed the target level at the final 
stage by up to 16%. Depending on the scenario, the 
reserves can be as high as 1,800. Their standard deviation 

(across scenarios) ranges from 5 at the first stage to 200 
at the final stage. The constraints in case TMC lead to 
a much lower level of reserves compared with the other 
cases, which implies, in fact, less security against future 
increases of pension payments.

Summarizing the optimal allocations, expected 
wealth, and shortfall probabilities are mainly affected 
by considering mixing correlations, whereas the type of 
distribution chosen has a smaller impact. This distinction 
is mainly attributable to the higher proportion allocated 
to equities if different market conditions are taken into 
account by mixing correlations.

The results of any asset allocation strategy crucially 
depend upon the mean returns. This effect is now inves-
tigated by parametrizing the forecasted future means 
of equity returns. Assume that an econometric model 
forecasts that the future mean return for U.S. equities is 
some value between 5% and 15%. The mean of European 
equities is adjusted accordingly so that the ratio of equity 
means and the mean bond returns as in Exhibit 5 are 
maintained. All other assumptions of case NM hold 
(normal distribution and mixing correlations). Exhibit 8 
summarizes the effects of these mean changes in terms of 
the optimal initial weights. As expected (see Chopra and 
Ziemba [1993] and Kallberg and Ziemba [1981, 1983]),  
the results are very sensitive to the choice of the mean 
return. If we assume that the mean return for U.S. 
stocks is equal the long run mean of 12% as estimated 
by Dimson et al. [2002], the model yields an optimal 
weight for equities of 100%. However, a mean return 
for U.S. stocks of 9% implies less than 30% optimal 
weight for equities.

E x h i b i t  7
Expected Portfolio Weights at the Final Stage by Case (percentage), Expected Terminal Wealth, Expected 
Reserves, and the Probability for Wealth Target Shortfalls (percentage) at the Final Stage

Source: Geyer and Ziemba [2008].
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MODEL TESTS

Since state-dependent correlations have a signifi-
cant impact on allocation decisions, it is worthwhile to 
further investigate their nature and implications from 
the perspective of testing the model. Positive effects on 

the pension fund performance induced by the stochastic, 
multiperiod planning approach will only be realized if 
the portfolio is dynamically rebalanced as implied by the 
optimal scenario tree. The performance of the model is 
tested considering this aspect. As a starting point, it is 
instructive to break down the rebalancing decisions at 
later stages into groups of achieved wealth levels. This 
approach reveals the “decision rule” implied by the 
model depending on the current state. Consider case TM: 
Quintiles of wealth are formed at stage 2 and the average 
optimal weights assigned to each quintile are computed. 
The same is done using quintiles of wealth at stage 5.

Exhibit 9 shows the distribution of weights for each 
of the five average levels of wealth at the two stages. 
While the average allocation at stage 5 is essentially 
independent of the wealth level achieved (the target 
wealth at stage 5 is 154.3), the distribution at stage 2 
depends on the wealth level in a specific way. If average 
attained wealth is 103.4, which is slightly below the 
target, a very cautious strategy is chosen. Bonds have 
the highest weight in this case (almost 50%). In this 
situation, the model implies that the risk of even stronger 
underachievement of the target is to be minimized. The 
model relies on the low, but more certain, expected 
returns of bonds to move back to the target level. If 
attained wealth is far below the target (97.1), the model 
implies more than 70% equities and a high share (10.9%) 
of relatively risky U.S. bonds. With such strong under-
achievement, there is no room for a cautious strategy to 
attain the target level again. If average attained wealth 

E x h i b i t  8
Optimal Asset Weights at Stage 1 for Varying Levels 
of U.S. Equity Means

Source: Geyer and Ziemba [2008].

E x h i b i t  9
Optimal Weights Conditional on Quintiles of Portfolio Wealth at Stage 2 and Stage 5

Source: Geyer and Ziemba [2008].
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equals 107.9, which is close to the target wealth of 107.5, 
the highest proportion is invested into U.S. assets, with 
49.6% invested in equities and 22.8% in bonds. The U.S. 
assets are more risky than the corresponding European 
assets, which is acceptable because portfolio wealth is 
very close to the target and risk does not play a big role. 
For wealth levels above the target, most of the portfolio 
is switched to European assets, which are safer than U.S. 
assets. This “decision” may be interpreted as an attempt 
to preserve the high levels of attained wealth.

The decision rules implied by the optimal solu-
tion can be used to perform a test of the model using 
the following rebalancing strategy. Consider the ten-
year period from January 1992 to January 2002. In the 
f irst month of this period, we assume that wealth is 
allocated according to the optimal solution for stage 1 
given in Exhibit 6. In each of the subsequent months, the 
portfolio is rebalanced as follows: identify the current 
volatility regime (extreme, highly volatile, or normal) 
based on the observed U.S. stock return volatility. Then 
search the scenario tree to find a node that corresponds 
to the current volatility regime and has the same or a 
similar level of wealth. The optimal weights from that 
node determine the rebalancing decision.

For the no-mixing cases NA, TA, and HA, the 
information about the current volatility regime cannot 
be used to identify optimal weights. In those cases, use 
the weights from a node with a level of wealth as close as 
possible to the current level of wealth. Exhibit 10 pres-
ents summary statistics for the complete sample and the 
out-of-sample period October 2000 to January 2002.

The mixing correlation solutions assuming normal 
and t-distributions (cases NM and TM) provide a higher 
average return with lower standard deviation than the 
corresponding non-mixing cases (NA and TA). The 
advantage may be substantial, as indicated by the 14.9% 
average return of TM compared to 10.0% for TA. The 
t-statistic for this difference is 1.7 and is significant at the 
5% level (one-sided test). Using the historical distribution 
and mixing correlations (HM) yields a lower average 
return than no-mixing (HA). In the constrained case 
TMC, the average return for the complete sample is in 
the same range as that for the unconstrained cases. This 
is mainly owing to relatively high weights assigned to 
U.S. bonds which performed very well during the test 
period, whereas stocks performed poorly. The standard 
deviation of returns is much lower because the con-
straints imply a lower degree of rebalancing.

To emphasize the difference between the cases TM 
and TA, Exhibit 11 compares the cumulated monthly 
returns obtained from the rebalancing strategy for the 
two cases as well as a buy-and-hold strategy, which 
assumes that the portfolio weights on January 1992 are 
fixed at the optimal TM weights throughout the test 
period. Rebalancing on the basis of the optimal TM 
scenario tree provides a substantial gain when compared 
to the buy-and-hold strategy or the performance using 
TA results, in which rebalancing does not account for 
different correlation and volatility regimes.

Such in- and out-of-sample comparisons depend on 
the asset returns and test period. To isolate the potential 
benefits from considering state-dependent correlations, 
the following controlled simulation experiment was 
performed. Consider 1,000 ten-year periods in which 
simulated annual returns of the four assets are assumed to 
have the statistical properties summarized in Exhibit 5. 
One of the ten years is assumed to be an “extreme” year, 
two years correspond to “highly volatile” markets, and 
seven years are “normal” years. We compare the average 
annual return of two strategies:  (a)  a buy-and-hold 
strategy using the optimal TM weights from Exhibit 6 
throughout the ten-year period, and (b) a rebalancing 
strategy that uses the implied decision rules of the 
optimal scenario tree as explained in the in- and out-
of-sample tests above. For simplicity, it was assumed that 
the current volatility regime is known in each period. 
The average annual returns over 1,000 repetitions of the 
two strategies are 9.8% (rebalancing) and 9.2% (buy and 
hold). The t-statistic for the mean difference is 5.4 and 

E x h i b i t  1 0
Results of Asset Allocation Strategies Using the 
Decision Rule Implied by the Optimal Scenario Tree

Source: Geyer and Ziemba [2008].
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indicates a highly signif icant advantage of the rebal-
ancing strategy, which exploits the information about 
state-dependent correlations. For comparison, the same 
experiment was repeated using the optimal weights from 
the constrained case TMC. The same average mean of 
8.1% for both strategies was obtained. This result indi-
cates that the constraints imply insufficient rebalancing 
capacity. Therefore, knowledge about the volatility 
regime cannot be sufficiently exploited to achieve supe-
rior performance relative to the buy-and-hold strategy. 
This result also shows that the relatively good perfor-
mance of the TMC rebalancing strategy in the sample 
period 1992–2002 is positively biased by the favorable 
conditions during that time.

Final Comments

The model InnoALM provides a relatively easy-
to-use tool to help Austrian pension funds’ invest-
ment allocation committees evaluate the effects of 
various policy choices in light of changing economic 
conditions and various goals, constraints, and liability 
commitments. As suggested by a referee, it is f lexible, 

sophisticated, and—given the state of the art in software 
availability—a computationally tractable computational 
tool. The clients have been able to use it in regula-
tory and pension fund applications as the quote below 
indicates. The model includes features that ref lect real 
investment practices. These features include multiple 
scenarios, non-normal distributions, and different vola-
tility and correlation regimes. The model provides a 
systematic way to estimate in advance the likely results 
of particular policy changes and asset return realizations. 
This model provides more confidence and justification 
to policy changes that may be controversial, such as a 
higher weight in equity and less in bonds than has tra-
ditionally been the case in Austria.

The model is an advance on previous models and 
includes new features, such as state-dependent correlation 
matrixes and convex risk measures. Crucial to the success 
of the results are the scenario inputs and especially the 
mean return assumptions. The model has a number of 
ways to estimate such scenarios. See also Ziemba [2003] 
for other scenario estimation procedures and other appli-
cations of similar models for various financial institu-
tions. Others have applied stochastic programming 

E x h i b i t  1 1
Cumulative Monthly Returns for Different Strategies

Source: Geyer and Ziemba [2008].
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models to insurance, such as Mulvey et al. [2000] and 
Høyland and Wallace [2001], and to individual asset-
liability management (ALM) such as Consiglio et al. 
[2004] and Consigli et al. [2012], and others.

Given good inputs, the policy recommendations can 
improve current investment practice and provide greater 
confidence to the asset allocation process. The following 
quote by Konrad Kontriner (member of the board) and 
Wolfgang Herold (senior risk strategist) of Innovest 
emphasizes the practical importance of InnoALM:

The InnoALM model has been in use by Innovest, 
an Austrian Siemens subsidiary, since its first draft 
versions in 2000. Meanwhile it has become the 
only consistently implemented and fully inte-
grated proprietary tool for assessing pension 
allocation issues within Siemens AG worldwide. 
Apart from this, consulting projects for various 
European corporations and pensions funds out-
side of Siemens have been performed on the basis 
of the concepts of InnoALM.

The key elements that make InnoALM 
superior to other consulting models are the f lex-
ibility to adopt individual constraints and target 
functions in combination with the broad and 
deep array of results, which allows to investigate 
individual, path dependent behavior of assets and 
liabilities as well as scenario-based and Monte-
Carlo like risk assessment of both sides.

In light of recent changes in Austrian pen-
sion regulation, the latter even gained additional 
importance, as the rather rigid asset based limits 
were relaxed for institutions that could prove suf-
ficient risk management expertise for both assets 
and liabilities of the plan. Thus, the implementa-
tion of a scenario-based asset allocation model will 
lead to more f lexible allocation restraints that will 
allow for more risk tolerance and will ultimately 
result in better long term investment performance.

Furthermore, some results of the model 
have been used by the Austrian regulatory 
authorities to assess the potential risk stemming 
from less constraint pension plans.

ENDNOTES

Special thanks to Professor Alois Geyer for work with 
me that led to our joint article on this model, Geyer and 
Ziemba [2008].

1For information, see http://www6.software.ibm.com/
sos/features/stoch.htm).
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